Magic Cube Puzzle

āĻŦāĻŋāĻœā§āĻžāĻžāĻĒāύāϝ⧁āĻ•ā§āϤ
ā§Š.⧝
ā§Ģ.ā§Ģā§¯Â āĻšāĻžāϜāĻžā§° āϟāĻž āĻĒā§°ā§āϝāĻžāϞ⧋āϚāύāĻž
ā§Ģ āύāĻŋāϝ⧁āϤ+
āĻĄāĻžāωāύāĻ˛â€™āĻĄ
āϏāĻŽāϞ⧰ āĻŽā§‚āĻ˛ā§āϝāĻžāĻ‚āĻ•āύ
āϏāĻ•āϞ⧋
āĻ¸ā§āĻ•ā§ā§°ā§€āύāĻļā§āĻŦāϟ⧰ āĻĒā§āϰāϤāĻŋāĻšā§āĻ›āĻŦāĻŋ
āĻ¸ā§āĻ•ā§ā§°ā§€āύāĻļā§āĻŦāϟ⧰ āĻĒā§āϰāϤāĻŋāĻšā§āĻ›āĻŦāĻŋ
āĻ¸ā§āĻ•ā§ā§°ā§€āύāĻļā§āĻŦāϟ⧰ āĻĒā§āϰāϤāĻŋāĻšā§āĻ›āĻŦāĻŋ
āĻ¸ā§āĻ•ā§ā§°ā§€āύāĻļā§āĻŦāϟ⧰ āĻĒā§āϰāϤāĻŋāĻšā§āĻ›āĻŦāĻŋ

āĻāχ āĻ—ā§‡â€™āĻŽāĻŸā§‹ā§° āĻŦāĻŋāĻˇā§Ÿā§‡

The world's Best Endless Cube Game! The MOST attractive cube puzzle game EVER!

DOWNLOAD the latest magic cube game for FREE!

If you are learning Fridrich Method, our app will be helpful. You can use this app to check out all algorithms of Fridrich Method. Or If you like puzzle game, we also provide endless cube puzzles for solving. Try to solve the cube puzzle in the limit of steps.

Features:
A realistic cube model.
Smooth rotate.
Endless puzzles.

Main Scene:
Play: You need to solve the cube puzzle in the limit of steps. Which level can you achieve?
Practice: Just let you play the Cube in a free way.
Algorithms: Show All CFOP Algorithms that contains 41 F2L, 57 OLL and 21 PLL.

/**************************************/
Follows is the 4 steps of CFOP Method:
1. The Cross
This first stage involves solving the four edge pieces in one outer layer of the puzzle, centering around a commonly colored center piece.

2. First Two Layers (F2L)
In F2L, corner and edge pieces are paired up and later moved to their correct location. There are 42 standard cases for each corner-edge pair including the case where it is already solved. It can also be done intuitively.

3. Orientation of the Last Layer (OLL)
This stage involves manipulating the top layer so that all the pieces therein have the same color on top, at the expense of incorrect colors on other sides. This stage involves a total of 57 algorithms. A simpler version, called "two-look OLL" orients edges and corners separately. It uses nine algorithms, two for edge orientation and seven for corner orientation.

4. Permutation of the Last Layer (PLL)
The final stage involves moving the pieces of the top layer while preserving their orientation. There is a total of 21 algorithms for this stage. They are distinguished by letter names, usually based on what they look like with arrows representing what pieces are swapped around. "Two-look" PLL solves the corners and edges separately. It uses six algorithms, two for corner permutation and four for edge permutation.
āφāĻĒāĻĄā§‡â€™āϟ āϕ⧰āĻž āϤāĻžā§°āĻŋāĻ–
⧍⧝-ā§Ļā§Ž-⧍ā§Ļ⧍ā§Ģ

āĻĄā§‡āϟāĻž āϏ⧁⧰āĻ•ā§āώāĻž

āĻŦāĻŋāĻ•āĻžāĻļāĻ•ā§°ā§āϤāĻžāϏāĻ•āϞ⧇ āφāĻĒā§‹āύāĻžā§° āĻĄā§‡āϟāĻž āϕ⧇āύ⧇āĻ•ā§ˆ āϏāĻ‚āĻ—ā§ā§°āĻš āφ⧰⧁ āĻļā§āĻŦā§‡ā§ŸāĻžā§° āϕ⧰⧇ āĻ¸ā§‡ā§ŸāĻž āĻŦ⧁āϜāĻŋ āĻĒā§‹ā§ąāĻžā§° āϜ⧰āĻŋ⧟āϤ⧇ āϏ⧁⧰āĻ•ā§āώāĻž āφ⧰āĻŽā§āĻ­ āĻšā§ŸāĨ¤ āĻĄā§‡āϟāĻžā§° āĻ—ā§‹āĻĒāĻ¨ā§€ā§ŸāϤāĻž āφ⧰⧁ āϏ⧁⧰āĻ•ā§āώāĻž āĻĒā§ā§°āĻŖāĻžāϞ⧀ āφāĻĒā§‹āύāĻžā§° āĻŦā§āĻ¯ā§ąāĻšāĻžā§°, āĻ…āĻžā§āϚāϞ āφ⧰⧁ āĻŦāϝāĻŧāϏ⧰ āĻ“āĻĒā§°āϤ āĻ­āĻŋāĻ¤ā§āϤāĻŋ āϕ⧰āĻŋ āĻ­āĻŋāĻ¨ā§āύ āĻšâ€™āĻŦ āĻĒāĻžā§°ā§‡āĨ¤ āĻŦāĻŋāĻ•āĻžāĻļāĻ•ā§°ā§āϤāĻžāĻ—ā§°āĻžāĻ•ā§€ā§Ÿā§‡ āĻāχ āϤāĻĨā§āϝāĻ–āĻŋāύāĻŋ āĻĒā§ā§°āĻĻāĻžāύ āϕ⧰āĻŋāϛ⧇ āφ⧰⧁ āϏāĻŽā§Ÿā§° āϞāϗ⧇ āϞāϗ⧇ āĻā§ŸāĻž āφāĻĒāĻĄā§‡â€™āϟ āϕ⧰āĻŋāĻŦ āĻĒāĻžā§°ā§‡āĨ¤
āϤ⧃āĻ¤ā§€ā§Ÿ āĻĒāĻ•ā§āώ⧰ āϏ⧈āϤ⧇ āϕ⧋āύ⧋ āĻĄā§‡āϟāĻž āĻļā§āĻŦ⧇āϝāĻŧāĻžā§° āϕ⧰āĻž āύāĻžāχ
āĻŦāĻŋāĻ•āĻžāĻļāĻ•ā§°ā§āϤāĻžāχ āĻĄā§‡āϟāĻž āĻļā§āĻŦā§‡ā§ŸāĻžā§° āϕ⧰āĻžā§° āĻŦāĻŋāĻˇā§Ÿā§‡ āϕ⧇āύ⧇āĻ•ā§ˆ āĻ˜ā§‹āώāĻŖāĻž āϕ⧰⧇ āϏ⧇āχ āĻŦāĻŋāĻˇā§Ÿā§‡ āĻ…āϧāĻŋāĻ• āϜāĻžāύāĻ•
āĻāχ āĻāĻĒā§â€ŒāĻŸā§‹ā§ąā§‡ āĻāχ āϧ⧰āĻŖā§° āĻĄā§‡āϟāĻž āϏāĻ‚āĻ—ā§ā§°āĻš āϕ⧰āĻŋāĻŦ āĻĒāĻžā§°ā§‡
āĻ…ā§ąāĻ¸ā§āĻĨāĻžāύ āφ⧰⧁ āĻĄāĻŋāĻ­āĻžāχāϚ āĻ…āĻĨāĻŦāĻž āĻ…āĻ¨ā§āϝ āφāχāĻĄāĻŋ
āĻĄā§‡āϟāĻž āĻāύāĻ•ā§ā§°āĻŋāĻĒā§āϟ āϕ⧰āĻž āĻšā§‹ā§ąāĻž āύāĻžāχ
āĻĄā§‡āϟāĻž āĻŽāϚāĻŋāĻŦ āĻ¨ā§‹ā§ąāĻžā§°āĻŋ

āĻŽā§‚āĻ˛ā§āϝāĻžāĻ‚āĻ•āύ āφ⧰⧁ āĻĒā§°ā§āϝāĻžāϞ⧋āϚāύāĻžāϏāĻŽā§‚āĻš

ā§Ē.ā§Ļ
ā§Ģ.ā§¨ā§§Â āĻšāĻžāϜāĻžā§° āϟāĻž āĻĒā§°ā§āϝāĻžāϞ⧋āϚāύāĻž

āĻāĻĒā§° āϏāĻŽā§°ā§āĻĨāύ

āĻŦāĻŋāĻ•āĻžāĻļāĻ•ā§°ā§āϤāĻžā§° āĻŦāĻŋāĻˇā§Ÿā§‡
厚昞卓
zhimengtech@gmail.com
å—åąąå¤§é“1155åˇ110厤 å—åąąåŒē, æˇąåœŗå¸‚, åšŋ䏜ᜁ China 530004
undefined

āĻāϕ⧇āϧ⧰āĻŖā§° āĻ—ā§‡â€™āĻŽāϏāĻŽā§‚āĻš